LOW-LATENCY GPGPU

A 5-minute intro and investigation

Disclaimer

These findings reflect the point of view of someone who's been courting only CUDA in a hobbyist setting since 2010, and in a (lightweight) professional setting since 2017

- I'd love to hear the viewpoints of AMD, Intel, Direct3D, Metal, and Vulkan folks on this - hit me up afterwards!
 - And maybe give me some hardware to play with...?

So, GPGPUs have latency issues...

- Calling GPU functions takes time
- Moving memory around takes a lot of time
- The GPU Driver takes its sweet, sweet time

...right?

10+ years of GPGPU

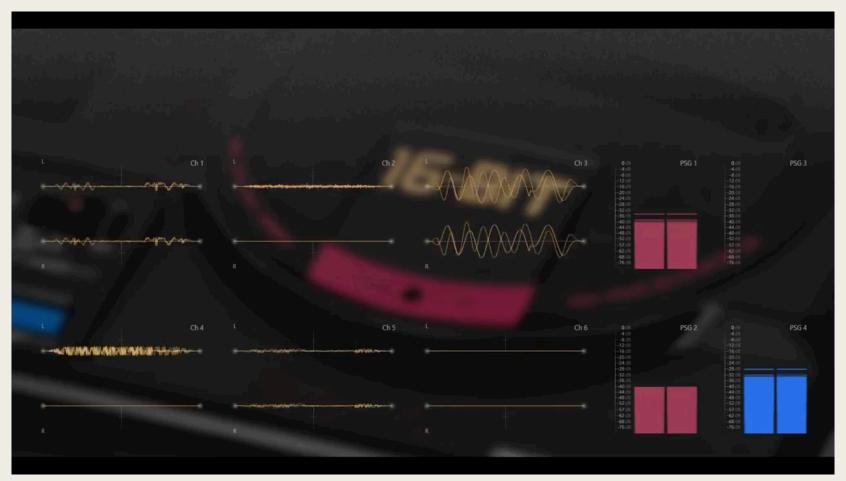
APIs are slimmer!

- (D3D12 / Vulkan / Metal vs. OpenGL/D3D9)
- GPUs are faster!
- PCI Express is faster!

Most of all, Drivers are faster!

Literally 2 weeks ago: NVIDIA introduces "Ultra Low Latency Mode"

settings e settings		Antialiasing - Setting	Application-controlled	
		Antialiasing - Transparency	Off	
		CUDA - GPUs	All	
		DSR - Factors	2.00x (native resolution)	
		DSR - Smoothness	33%	
		Low Latency Mode	Off	~
		Monitor Technology	© ≌ Off	
		when a literation	On	~
			Ultra	<u>eone</u>


"Latency" is relative

Domain	Acceptable Latency
Protein Folding Simulation	Days
Weather Simulation	Hours
Radar Signal Convolution	200~300ms
Videogame	10~30ms
Audio Processing	5~10ms
High Frequency Stock Trading	<1ms

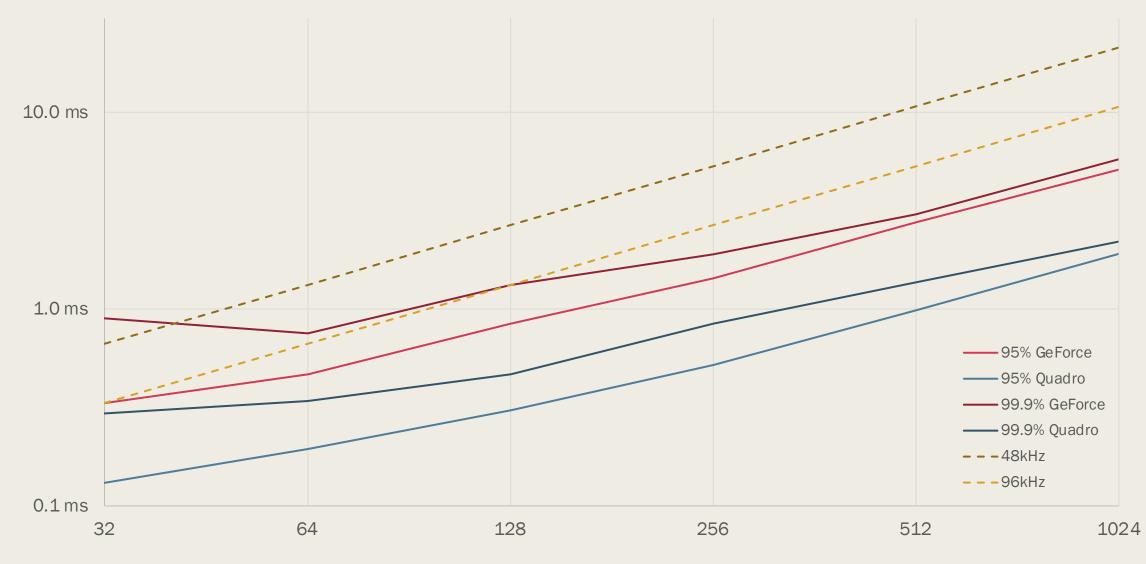
"Latency" is relative

Domain	Acceptable Latency
Protein Folding Simulation	Days
Weather Simulation	Hours
Radar Signal Convolution	200~300ms
Videogame	10~30ms
Audio Processing	5~10ms
High Frequency Stock Trading	<1ms

Experiment: Real-time FM Synth

Matheus Vitti Santos @ Meeting C++ 2019 Solar Modulation - Savaged Regime

Test subjects


GeForce 640M (this computer)

- Kepler Architecture, SM 3.0, 2012
- 2GB GDDR5 / 128bit / 900MHz
- ~390 Gflops
 - 2x PlayStation 3
 - Intel UHD 620
- ~25 Giops

Quadro P400 (office workstation)

- Pascal Architecture, SM 6.1, 2017
- 2GB GDDR5 / 64bit / 2GHz
- ~630 Gflops
 - ½ Xbox One
 - 2x Intel Iris 5100
- ~200 Giops

Compute Time per Audio Frame

DEMO TIME!

THANK YOU!

And go do something awesome with that GPU of yours!

Image Sources

- Screenshot: Marble Madness, c. Atari 1984
- Nvidia Control Panel: <u>https://www.howtogeek.com/437761/how-to-enable-ultra-low-latency-mode-for-nvidia-graphics/</u>
- FM Music Video: <u>Savaged Regime</u>